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Abstract: Background: Decompression of the lumbar spine is one of the most common procedures
performed in spine surgery. Hospital length of stay (LOS) is a clinically relevant metric used to
assess surgical success, patient outcomes, and socioeconomic impact. This study aimed to investigate
a variety of machine learning and deep learning algorithms to reliably predict whether a patient
undergoing decompression of lumbar spinal stenosis will experience a prolonged LOS. Methods:
Patients undergoing treatment for lumbar spinal stenosis with microsurgical and full-endoscopic
decompression were selected within this retrospective monocentric cohort study. Prolonged LOS
was defined as an LOS greater than or equal to the 75th percentile of the cohort (normal versus
prolonged stay; binary classification task). Unsupervised learning with K-means clustering was
used to find clusters in the data. Hospital stay classes were predicted with logistic regression,
RandomForest classifier, stochastic gradient descent (SGD) classifier, K-nearest neighbors, Decision
Tree classifier, Gaussian Naive Bayes (GaussianNB), support vector machines (SVM), a custom-made
convolutional neural network (CNN), multilayer perceptron artificial neural network (MLP), and
radial basis function neural network (RBNN) in Python. Prediction accuracy and area under the
curve (AUC) were calculated. Feature importance analysis was utilized to find the most important
predictors. Further, we developed a decision tree based on the Chi-square automatic interaction
detection (CHAID) algorithm to investigate cut-offs of predictors for clinical decision-making. Results:
236 patients and 14 feature variables were included. K-means clustering separated data into two
clusters distinguishing the data into two patient risk characteristic groups. The algorithms reached
AUCs between 67.5% and 87.3% for the classification of LOS classes. Feature importance analysis of
deep learning algorithms indicated that operation time was the most important feature in predicting
LOS. A decision tree based on CHAID could predict 84.7% of the cases. Conclusions: Machine
learning and deep learning algorithms can predict whether patients will experience an increased LOS
following lumbar decompression surgery. Therefore, medical resources can be more appropriately
allocated to patients who are at risk of prolonged LOS.

Keywords: length of stay; spine surgery; decompression; spinal stenosis; machine learning; deep
learning; artificial intelligence; prediction

1. Introduction

In patients over 65, lumbar spinal stenosis (LSS) is the most commonly occurring rea-
son for spinal surgery, and decompression of the lumbar spine is among the most common
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surgical procedures [1]. In theory, surgical decompression should relieve discomfort and
improve function. In addition to laminectomy and laminotomy, fusion procedures may also
be used as decompression methods. The purpose of spinal surgery is to reduce the pressure
on the nerves afflicted by spinal stenosis by improving the cross-sectional area of the spinal
canal [2]. Nearly a third of the general population suffers from lower back pain. Approxi-
mately 80 to 100 billion USD are spent annually on treating these patients [3,4]. The annual
incidence of LSS surgery in the United States is approximately 1,2 per 1000; however, the
prevalence of LSS in adults is expected to rise 59% by the year 2025 [5,6]. In terms of hospital
expenses alone, the total cost of surgical intervention amounted to 1.65 billion USD [4]. An
estimated 306 million USD have been spent on lumbar spine surgeries in the United States
in the last few years among patients aged 65 and older [4,7,8]. In particular, by 2050, the
elderly population is projected to increase from 43.1 million people to 83.7 million people,
which will result in a significant increase in healthcare expenditures on degenerative spine
diseases. An average of 8-10% of all patients who undergo spinal decompression need to
undergo the procedure again, resulting in higher hospital costs [9,10]. Furthermore, these
surgical procedures carry a 3.1% risk of cardiac problems or stroke, as well as a 0.4% risk of
death within one month [4].

An important factor to consider when evaluating socioeconomic costs, surgical success,
and patient outcomes is the length of stay (LOS). LOS is a measure that is frequently used
to reduce healthcare costs, especially in light of escalating healthcare expenditures. When
patients are undergoing spinal surgery, the length of stay variable is critical from the
patient’s point of view and is a major factor in determining health care expenditures. It
is estimated that each additional day in the hospital costs approximately 1000 USD [11],
and inpatient hospital expenditures (excluding instrumentation and surgical procedures)
strongly correlate with the length of stay [12]. It is estimated that hospitalization costs for
spine surgery increased nearly threefold between 1992 and 2003 [13,14]. Hospitalization
costs are significant and should not be underestimated. In order to define value-based care
for spinal illnesses, it is crucial to determine the precise length of stay. Ensuring that patients
are not kept in the hospital for longer than necessary is an important goal. An analysis
conducted by Boylan and colleagues on the costs associated with adolescents’ scoliosis
surgery found that each additional day of hospitalization costs in excess of 1100 USD
in insurance expenditures and in excess of 5200 USD in terms of hospital charges [15].
Additionally, long-term hospital patients can incur an additional 19,000 USD in costs in
comparison to those with a shorter hospital stay [16]. For other spinal fusion surgeries,
similar results have been observed, indicating the need for further research either to reduce
LOS significantly or to prevent unnecessary extensions [17].

Predictive analysis and machine learning have emerged as valuable tools for predicting
patient outcomes based on pertinent feature characteristics variables [18]. Developing
patient-centered outcome prediction models, including those for patient-related outcome
measures and length of stay, can contribute to improving society’s utilization of healthcare
resources [19,20]. In doing so, policymakers and clinicians could compare treatments across
disciplines to determine how best to allocate budget resources among different approaches.

Many studies have already shown that certain characteristics are associated with a
longer hospital stay following spinal surgery. A longer length of stay (LOS) was associated
with an increase in operating time during adult spinal deformity surgery, according to
Phan et al. [15]. The authors of a multicenter study found that age, the number of levels
fused, infection, and comorbidities are risk factors for a higher death rate [16]. Despite
their ability to identify individuals likely to have a longer LOS, risk indicators cannot
predict whether a patient will have a longer LOS. The use of machine learning and deep
learning algorithms can enhance the knowledge provided by these studies and predict
whether a particular patient will require a normal length of hospital stay or an extended
hospital stay based on a wide range of clinicopathological characteristics. In particular,
these algorithms can be integrated into the hospital’s software environment, resulting in
continuous monitoring of at-risk patients and the achievement of precision medicine goals.
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Considering the socioeconomic impact of prolonged LOS, the present study sought
to investigate various artificial intelligence-based algorithms that might be able to predict
whether lumbar decompression surgery patients will experience a short or long LOS.
Further, we aim to find the most relevant feature variables which are important to solve
this classification task.

2. Materials and Methods
2.1. Study Design

We performed a retrospective cohort study including consecutive patients treated with
microsurgical decompression or full-endoscopic interlaminar decompression of lumbar
spinal stenosis between 2016 and 2021 at the Department of Spine Surgery, Loretto-Hospital
Freiburg in Germany, an affiliated hospital of the University Medical Center Freiburg,
Germany. This retrospective observational study was approved by the local Ethics Com-
mittee Freiburg, Germany [Number: 116/200]. Written informed consent to participate in
observational studies was obtained from each patient.

The main inclusion criterion involved patients with lumbar spinal stenosis treated
with either microsurgical or full-endoscopic decompression in the aforementioned period.
The iLESSYS® system (Joimax GmbH, Karlsruhe, Germany) was utilized for the endoscopic
group. After collecting all data from patients fulfilling our inclusion criteria, we applied our
exclusion criteria for filtering the initial dataset. Exclusion criteria included: <18-years-old
patients, patients with tumors of the spine, patients having spinal fusion, and patients who
have declined the usage of their data for research purposes.

2.2. Data Handling and Statistical Analysis

Patients were collected from the in-house patient information system and extracted
into a predefined datasheet. Data was pseudonymized utilizing a code generated with
the “encode” command in Stata Statistical Software Release 15 (StataCorp. 2011, College
Station, TX, USA). Variables were included in the study extraction form according to our
previous study [20] and a literature search to only consider previously identified significant
variables for hospital length of stay. The surgery-related and clinical factor variable group
included surgical technique (microsurgical versus full-endoscopic decompression), number
of targeted levels, operation time (OT), hospital length of stay (LOS), the American Society
of Anesthesiologists (ASA) physical status classification, and perioperative and postopera-
tive complications. Patient data were screened for the following complications: residual
sensorimotor deficits or new-onset sensorimotor deficits, hematomas requiring revision,
persisting stenosis requiring revision, postoperative instability, and fracture. This group
also contained the demographic data for descriptive statistics (sex, age, BMI), alcohol and
nicotine use data, and German insurance type (private or public insurance). The laboratory
variable group included preoperative C-reactive protein (CRP) levels.

The target classes were classified as prolonged when hospital length of stay was
>75% percentile and normal when <75% percentile (binary classification task) [21,22].
Unsupervised learning with K-means clustering was used to evaluate whether data can
be clustered according to the features in the dataset. Auto clustering was used according
to Schwarz’s Bayesian Criterion (BIC). Comparison of cluster variables was made with
the Mann-Whitney U test or Chi-square test where applicable. Further, a decision tree
with the Chi-square automatic interaction detection algorithm was applied. CHAID is
a statistical tool to find the difference between child and parent nodes. The difference
between observed and expected counts of the target variable for each node and the squared
sum of these standardized differences will give the Chi-square value. CHAID algorithm
was applied with cross-validation (1 = 5), maximum tree depth of 3, minimum cases in
parent node 10, and minimum cases in child node of 5, resulting in # = 19 nodes, n = 11
terminal nodes, and a depth of 3. Multiple imputations were applied utilizing linear
regression for scale variables and logistic regression for categorical variables to impute
missing values for the CHAID algorithm. Supervised machine learning and deep learning
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techniques were applied to predict the target LOS classes. The following algorithms
were used: logistic regression, RandomForest classifier, stochastic gradient descent (SGD)
classifier, K-nearest neighbors, Decision Tree classifier, Gaussian Naive Bayes (GaussianNB),
support vector machines (SVM), a custom-made convolutional neural network (CNN),
multilayer perceptron artificial neural network (MLP), and radial basis function neural
network (RBNN). The hardware and software environment specifications were as follows:

CPU: AMD Ryzen 9 5950X 16-Core Processor (Santa Clara, CA, USA)
RAM: 64 GB

GPU: NVIDIA Geforce RTX 3090 (Santa Clara, CA, USA)

Python version: 3.10.4 (64-bit) (Wilmington, DE, USA)

OS: Windows 10 (Redmond, WA, USA)

Statistical analyses were conducted in Python and SPSS v26 (IBM, Armonk, NY, USA).

3. Results

We first performed unsupervised learning via K-means cluster analysis to cluster the
dataset into two classes and evaluate which features are important for clustering. The
first cluster analysis was done with the hospital length of stay (LOS) as raw data type
(continuous scale). The cluster analysis resulted in two clusters (74.5% in the high risk
group and 25.5% in the low risk group) (Figure 1). The data distribution showed that all
cluster variables (BMI, number of levels, age, preoperative CRP, and LOS) were significantly
higher for the high risk cluster than low risk cluster (p < 0.0001 for all comparisons) (Table 1).
Overall, it was possible to find two clusters indicating patients’ risk levels (i.e., the high risk
group showed higher BMI, number of targeted levels, age, LOS, and preoperative CRP).

Clusters

Input (Predictor) Importance

B1.0@o0.8@0.600.400.200.0 Cell Distribution
Doverail
Cluster Cow Risk High Risk @ High Risk
Cabel
[size
74.5% 25.5%4
CTIa 1%
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\ y g
Preoperative_CRP | Preoperative CRP
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Figure 1. K-means cluster analysis for the raw hospital length of stay target variable (continuous

scale). The most important feature to classify the data was the operation time, followed by the number
of levels, LOS, preoperative CRP, age, and BMI. The distribution charts show the distribution of the
features for both clusters. An example feature (operation time) is shown to help interpretation. The
selected feature shows that the distribution of operation time is right-shifted for the high risk cluster,
whereas it is left-shifted for the low risk cluster.
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Table 1. Descriptive statistics and pairwise comparisons of the clusters were obtained through
the K-means cluster analysis, including the continuous scale feature hospital length of stay
(LOS). **** p < 0.0001.

BMI Number_of Levels Op_Time Preoperative_CRP Age Days_in_Hospital
Mean St.d' ‘De- Mean St.d' .De- Mean St.d' ‘De- Mean St.d' .De- Mean St.d' .De- Mean St.d' .De-
viation viation viation viation viation viation
Low risk  27.39 5.670 1.04 0.242 55.04 29.086 4.45 13.325 57.2366 16.37208  11.70 5.482
Cluster Highrisk 28.75 5.145 1.92 0.973 137.63  51.662 40.90 66.902 72.2849 1197116  24.27 14.429
Combined 27.74 5.562 1.27 0.656 76.13 51.034 13.76 38.912 61.0787 16.69396  14.91 10.247
p_value AN XN sl AN XX XN bzl HHA K XN el bRzt AN K
The second cluster analysis was done with the hospital length of stay (LOS) as a
binary class type utilizing the 75% percentile as the cut-off point. The cluster analysis
resulted in two clusters (26.8% in cluster 1 and 73.2% in cluster 2) (Figure 2). The data
distribution showed that all cluster variables (BMI, number of levels, age, preoperative
CRP) were significantly higher for cluster number 1 than cluster number 2 (p < 0.0001 for
all comparisons) (Table 2). Further, the distribution of LOS class was significantly different
between clusters 1 and 2, with all prolonged cases being in cluster 1 and normal cases being
in cluster 2 (p < 0.0001).
Clusters
Input (Predictor) Importance Cell Distribution
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Figure 2. K-means cluster analysis for the binary hospital length of stay class (normal versus
prolonged). The most important feature to classify the data was the hospital length of stay class
(DIH_class), followed by age, operation time, number of levels, preoperative CRP, and BMI. The
distribution charts show the distribution of the features for both clusters. An example feature (age) is
shown to help interpretation. The selected feature shows that age distribution is right-shifted for the
high risk cluster (including the prolonged hospital stay class), whereas it is left-shifted for the low
risk cluster.
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Table 2. Showing the descriptive statistics and pairwise comparison of the clusters obtained

through the K-means cluster analysis, including the binary class feature of hospital length of
stay. ****p < 0.0001.

BMI Number_of_Levels Op_Time Preoperative_CRP Age Frequencies
Mean St.d' ‘De- Mean St.d' .De— Mean St.d' ‘De- Mean St.d' .De— Mean St.d' ‘De- Normal Prolonged
viation viation viation viation viation
Highrisk  28.31 5.649 1.62 1.022 104.92  58.253 23.72 51.250 73.2094 12.37884 0 63
Cluster Lowrisk  27.53 5.531 1.14 0.382 65.58 43.776 10.11 32.706 56.6354 15.86603 172 0
Combined 27.74 5.562 1.27 0.656 76.13 51.034 13.76 38.912 61.0787 16.69396 172 63
p_value LR RN RN R LR RN R ok H R Rt ok kF

We applied various machine learning and deep learning algorithms to predict the LOS
classes in the next step. The AUC for the multilayer perceptron model reached the highest
AUC with 0.873 (Figure 3). The feature importance analysis revealed that operation time
was the most important feature for the classification task, followed by BMI, preoperative
CRP, and age (Figure 4). 0: normal LOS; 1: prolonged LOS.

1.0

= I === normal
= prolonged

0.8

06 |

Sensitivity

04|

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

Dependent Variable: DIH_class

Figure 3. Prediction of hospital stay with multilayer perceptron (MLP). Input layer: feature variables
(22 units). Hidden Layer: 2 units, activation function: hyperbolic tangent. Output layer: dependent
variable Hospital stay (2 units), activation function: softmax, error function cross-entropy. The
number of units in the hidden layer was determined by the testing data criterion: the best number of
hidden units is the one that yields the smallest error in the testing dataset. Train/Test/Validation
split: 80/10/10. Percent incorrect predictions on training set: 14.5%; percent incorrect predictions on
testing set: 14.3%; percent incorrect predictions on holdout set: 10.0%; 0 refers to the prediction of the
normal class; 1 refers to the prediction of the prolonged LOS class. AUC: 0.873.
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Figure 4. Feature importance analysis for predicting the hospital length of stay classes in the multi-
layer perceptron model.

The AUC for the radial basis function neural network model (RBNN) reached an
AUC of 0.847 (Figure 5). The MLP model’s feature importance analysis revealed that
operation time was the most important feature for the classification task, followed by BMI
and preoperative CRP. However, the number of levels reached higher importance than age
with this model age (Figure 6).

1.0
== normal

== prolonged

0.8

0.6

Sensitivity

0.4

0.2 i

0.0
0.0 0.2 0.4 06 0.8 1.0

1 - Specificity
Dependent Variable: DIH_class

Figure 5. Prediction of hospital stay with radial basis function neural network (RBNN). Input
layer: feature variables (22 units). Hidden Layer: 5 units, activation function softmax. Output
layer: dependent variable Hospital stay (2 units), activation function: identity, error function sum
of squares. The number of units in the hidden layer was determined by the testing data criterion:
the best number of hidden units is the one that yields the smallest error in the testing dataset.
Train/Test/Validation split: 80/10/10. Percentage incorrect predictions on the training set 19.0%;
percent incorrect predictions on testing set: 11.8%; percent incorrect predictions on holdout set: 16.7%.
AUC: 0.847.
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Figure 6. Feature importance analysis for predicting the hospital length of stay classes in the radial
basis function neural network model (RBNN).

The accuracies and AUC of the machine learning algorithms and the custom-made
convolutional neural network (CNN) is shown in Table 3. The logistic regression reached the
highest accuracy, whereas the highest AUC was reached for the custom-made CNN (Table 3).

Table 3. Performance measures for the machine learning and deep learning algorithms to predict the
length of hospital stay class (binary classification task). Analysis was done with k-fold cross-validation
(k =5). AUC: area under the curve; Accuracy: (TP + TN)/(TP + TN + FP + EN).

Algorithm Accuracy AUC
LogisticRegression 0.814 0.814
Random Forest classifier 0.808 0.826
SGD classifier 0.771 0.804
K-nearest neighbors 0.755 0.769
Decision Trees classifier 0.739 0.675
GaussianNB 0.755 0.799

SVM 0.771 0.794

Custom CNN 0.771 0.862

Finally, we developed a decision tree utilizing the CHAID growing method for simple
interpretation in clinics (Figure 7). The algorithm could detect 84.7% of the cases correctly.
How to read the CHAID decision tree: for example, an age <49.829 resulted in 94.4% of
normal and only 5.6% of prolonged LOS cases. An absence of complication after this node
further results in all cases having normal LOS. In addition, an age between 49.829-67.811
results in 83.1% of cases having normal LOS. Of these cases who underwent endoscopic
decompression, all patients had normal LOS. In contrast, an age of >83.170 results in most
cases having prolonged LOS (69.6%). Most of these cases had prolonged LOS with a
non-private insurance type.
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Figure 7. Decision tree with CHAID growing method. Five-fold cross-validation. Percent correct
predictions with this algorithm: 84.7%.

4. Discussion

Lower back pain (LBP) is reported to be one of the most serious diseases affecting
both health and function, in addition to being among the most expensive to treat [23].
There has been an increase in the use of various treatments over the past 20 years, as
well as an increase in the cost of spinal care [6,24-26]. Despite these findings, studies
demonstrate that the number of people suffering from disabling back pain has increased
over the same period [26,27]. These developments are taking place in a context where health
care is increasingly focused on providing value-based treatment to patients. Researchers,
providers, and policymakers have an opportunity to design a uniform, value-driven,
and digitalized spine care paradigm built on precision medicine. In the absence of studies
pertaining to the length of stay, one of the most relevant patient-centered outcome measures,
we investigated whether the prolonged length of stay could be predicted using artificial
intelligence-based techniques. Our findings suggest that LOS can be predicted using data
from lumbar decompression surgery patients. Although we only used a small number of
cases, the algorithms showed satisfactory accuracies for the prediction task. As a result, our
findings can serve as a foundation for larger multi-center prospective studies that collect
data in order to develop more accurate models based on our findings.

Both the patient and the healthcare system can be significantly affected by a longer
LOS following lumbar decompression surgery [28,29]. A recent study has shown that
longer hospital stays are associated with higher complication rates and higher hospital
costs, especially in neurosurgical and orthopedic spine cases. In particular, more prolonged
LOS cases were more likely to be readmitted to the hospital. There is, however, the possi-
bility that this may be caused by underlying comorbidities rather than LOS as such [30].
Further, there is evidence that prolonged hospital stay increases the risk of anemia requir-
ing transfusion, impaired mental status, pneumonia, readmission, and hardware issues
resulting in reoperation in patients who have undergone spine surgery [31]. One study
of neurosurgical patients found that both physical therapy consultations and discharges
to a specialist nursing facility were related to 2.4 days and 6.2 days longer length of stay,
respectively [32].

Even though several risk factors have been identified for longer LOS following lum-
bar decompression surgery, no effective systematic model has been proposed to predict
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whether a patient will have a short or long LOS following this procedure. We only found
one study applying machine learning techniques to predict prolonged LOS after lumbar
spinal stenosis surgery [33]. Nevertheless, the authors reported an AUC of 0.54, which
is insufficient, considering that an AUC of 0.5 translates to no classification capacity (not
much better than a coin toss). In addition to identifying statistically significant clusters in
our cohort, which support our hypothesis that prolonged hospital stays are associated with
other features, the present study demonstrated that machine learning and deep learning
techniques could be used to effectively predict short hospital stays versus long hospital
stays. Along with contributing to a deeper understanding of a patient’s particular risk
profile, these findings can assist in better resource allocation and discharge planning. The
variables used in the machine learning method can be used to create an open-source web-
based LOS prediction tool. Such a procedure would facilitate external validation of the
provided models.

This study found that all algorithms in this study were able to predict and discriminate
between classes with AUC values of 0.675-0.873. In this study, the findings compared
favorably with those from other studies examining machine learning in orthopedic subspe-
cialties such as spine surgery. Prior research utilizing machine learning has used tree-based
methods or neural networks to predict intraoperative blood loss, prolonged hospital stay,
patient-reported outcomes, and discharge dispositions in the field with similar or inferior
results [15,34-38]. As the current study builds on previous work in this area, the results
from the current study add to the growing body of evidence supporting the use of machine
learning in orthopedic surgery. Also, according to Kobayashi et al., higher ASA class and
longer operating time were associated with a prolonged LOS after spinal surgery, although
our findings suggest that operation time contributes more significantly to the prolonged
LOS [39]. According to Adogwa et al., surgeon practice style and preferences appear to be
risk factors for prolonged LOS, which is consistent with our present finding that operating
time is correlated with an increase in LOS [40]. It is important to acknowledge that operat-
ing time cannot be attributed solely to surgeon preference or style, as patient comorbidities
may also contribute to longer surgical duration [41]. It is also important to consider the
surgeon’s learning curves when assessing surgical prediction models. Overall, the opera-
tion time can be associated with multiple parameters which might also be of importance
for LOS. The degree of invasiveness of spinal procedures is generally correlated with the
outcome of the operation (blood loss, operation time, and complication rate). As such, the
reduction of feature importance into a few parameters may be viewed as problematic as
long as not all other potentially important features are included in an assessment, which is
simply not feasible in a retrospective study design.

This risk assessment tool (RAPT) consists of six questions that have been validated for
predicting outcomes of patients undergoing joint replacement surgery. In addition, it assists
patients and physicians in identifying hurdles to discharge and can simplify the discharge
process [42]. Likewise, the findings of this study could be incorporated into an equivalent
tool. Quantifying the risks associated with surgery would be very helpful to both patients
and physicians before surgery. In addition to more accurately setting patient expectations,
this will allow the entire patient care team to develop an individualized care plan that is
intended to reduce the length of stay while increasing patient safety and satisfaction.

Our results also indicate that preoperative CRP levels might be relevant for assessing
the hospital length of stay in future prediction models. CRP is an acute-phase inflammatory
cytokine that is released by the liver in response to interleukin-6 and other inflamma-
tory factors [43]. It binds to phospholipids on bacterial surfaces, damaged or apoptotic
eukaryotic cells, and nuclear debris in cells. When bound to Fc-gamma receptors, CRP
activates the classical complement cascade and promotes phagocytosis [44]. CRP is a
well-recognized marker of systemic inflammation. It is also used to predict cardiovascular
events in nonsurgical populations based on different CRP risk cut-offs [45]. An increase
in CRP levels may be caused by infection, inflammation, trauma, malignancy, or tissue
infarction. In addition, an increase in CRP may be observed earlier in the course of a
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disease process than other non-specific markers (e.g., fever), and it may fall rapidly during
the course of the recovery process [44]. CRP may be helpful as a screening test to detect
inflammation early in the course of a disease process, as well as a monitoring tool to assess
the effectiveness of treatment. There is evidence that CRP rises as a consequence of surgical
trauma, and peaks 48 h after surgery [46,47]. In some patients, the CRP response may
only be incomplete or may not occur at all [47]. Validated CRP risk categories were able to
predict future cardiovascular events in apparently healthy individuals [48]. In previous
studies of cardiac surgery patients, higher preoperative levels of CRP were associated
with a greater risk of short- and long-term morbidity and mortality [49-51]. Further, a
link has been reported between the peak postoperative CRP response and the degree of
surgical trauma [52]. Although not all studies agree, minimal-invasive surgical procedures
generally result in lower CRP levels than open procedures [53-55]. It appears that pa-
tients who have a high preoperative CRP are more likely to have a higher and later peak
postoperative CRP than those who have a normal CRP [56]. The severity of inflammation
seems to be not related to surgical operation grade only, suggesting that it may be due to
both inflammatory co-morbidity and surgical trauma [57]. Overall, evidence regarding
the impact of preoperative CRP in spinal surgery patients is limited. Although it might be
intuitive that increased preoperative inflammatory states might affect the length of stay,
this phenomenon needs to be validated in future prospective studies. In our algorithms, the
inclusion of CRP as a laboratory marker led to an increase in diagnostic accuracy. Thus, it is
recommended to include laboratory markers in addition to other data types (clinical data,
imaging, genetics, histology) in future prediction models to evaluate whether the models’
diagnostic capabilities might improve. Further, this approach is helpful to determine the
most impactful features in the dataset [15].

Despite the strength of the algorithms presented, the novelty of the approach, and
the promising predictive results, the study does have some potential limitations. The
algorithms must be based on a sample that is representative of the population of patients
receiving spinal decompression surgery in order to be therapeutically beneficial. Because
our data comes from a single, small study;, its applicability to other institutions may be
limited. As a result, external validation of the models given is required. Furthermore, data
were collected retrospectively, lowering the evidence grade because the data may not be
as reliable as data collected prospectively. We were also unable to increase the selection
of variables to include other possibly important variables that could improve the model
further due to the retrospective methodology. However, based on what we found in our
prior work and a search of the literature [20], we set out to incorporate important variables.

5. Conclusions

Decompression of the lumbar spine is one of the most common procedures performed
in spine surgery. The associated costs are highly dependent on the hospital length of
stay. Patient-centered outcome prediction models to predict the length of stay can allow
using the available societal healthcare resources effectively. This enables policymakers and
providers to compare treatment strategies among different disciplines and to identify the
relative priorities for optimal resource allocation among various interventions. Our results
indicate that machine learning and deep learning techniques can effectively predict whether
patients will have a prolonged length of stay. Implementing the provided algorithms into
open-source software and external validation through large-scale prospective studies are
warranted to introduce the provided prediction tools in clinics.
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